
Hitting the Memory Wall: Implications of the Obvious

Appeared in Computer Architecture News, 23(1):20-24, March 1995. 7

References

[Bas91] F. Baskett, Keynote address. International Symposium on Shared Memory
Multiprocessing, April 1991.

[Hen90] J.L. Hennessy and D.A. Patterson,Computer Architecture: a Quantitative
Approach, Morgan-Kaufman, San Mateo, CA, 1990.

[McK94] S.A. McKee, et. al., “Experimental Implementation of Dynamic Access
Ordering”, Proc. 27th Hawaii International Conference on System Sciences,
Maui, HI, January 1994.

[McK94a] S.A. McKee, et. al., “Increasing Memory Bandwidth for Vector
Computations”, Proc. Conference on Programming Languages and System
Architecture, Zurich, March 1994.

Hitting the Memory Wall: Implications of the Obvious

Appeared in Computer Architecture News, 23(1):20-24, March 1995. 6

Figure 2 Trends for a Current Cache Miss/Hit Cost Ratio of 16

1 2 4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K

�

8K 16
K

�
32

K
64

K
�

12
8K

cache miss/hit cost ratio �

1

10

100

1000

10000
av

er
ag

e
cy

cl
es

 p
er

 a
cc

es
s

�

 p = 99.0%
 p = 99.4%

 p = 99.8%
19

95

20
00

20
05

20
10

 µ = 100%

19
95

20
00

20
05

20
10

 µ = 50%

(a) (b)

1 2 4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K

�

8K 16
K

�

32
K

64
K

�

12
8K

cache miss/hit cost ratio �

1

10

100

1000

10000

av
er

ag
e

cy
cl

es
 p

er
 a

cc
es

s

�

 p = 90.0%

 p = 94.0%

 p = 98.0%

19
95

20
00

20
05

20
10

 µ = 100%

19
95

20
00

20
05

20
10

 µ = 50%

Figure 3 Average Access Cost for 80% Annual Increase in Processor Performance

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

year �

2

4

6

8

10

av
er

ag
e

cy
cl

es
 p

er
 a

cc
es

s

�

 p = 90.0%

 p = 99.0%

 p = 99.8%

Hitting the Memory Wall: Implications of the Obvious

Appeared in Computer Architecture News, 23(1):20-24, March 1995. 5

As noted above, the right solution to the problem of the memory wall is probably something

that we haven’t thought of — but we would like to see the discussion engaged. It would

appear that we do not have a great deal of time.

Figure 1 Trends for a Current Cache Miss/Hit Cost Ratio of 4

1 2 4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K

�

8K 16
K

�

32
K

64
K

�

12
8K

cache miss/hit cost ratio �

1

10

100

1000

10000

av
er

ag
e

cy
cl

es
 p

er
 a

cc
es

s

�

 p = 99.0%
 p = 99.4%

 p = 99.8%

19
95

20
00

20
05

20
10

 µ = 100%

19
95

20
00

20
05

20
10

 µ = 50%

1 2 4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K

�

8K 16
K

�

32
K

64
K

�

12
8K

cache miss/hit cost ratio �

1

10

100

1000

10000

av
er

ag
e

cy
cl

es
 p

er
 a

cc
es

s
�

 p = 90.0%
 p = 94.0%

 p = 98.0%

19
95

20
00

20
05

20
10

 µ = 100%

19
95

20
00

20
05

20
10

 µ = 50%

(a) (b)

Hitting the Memory Wall: Implications of the Obvious

Appeared in Computer Architecture News, 23(1):20-24, March 1995. 4

Our prediction of the memory wall is probably wrong too — but it suggests that we have

to start thinking “out of the box”. All the techniques that the authors are aware of, including

ones we have proposed [McK94, McK94a], provide one-time boosts to either bandwidth

or latency. While these delay the date of impact, they don’t change the fundamentals.

The most “convenient” resolution to the problem would be the discovery of a cool, dense

memory technology whose speed scales with that of processors. We are not aware of any

such technology and could not affect its development in any case; the only contribution we

can make is to look for architectural solutions. These are probably all bogus, but the

discussion must start somewhere:

- Can we drive the number of compulsory misses to zero? If we can’t fix tm, then

the only way to make caches work is to drivep to 100% — which means

eliminating the compulsory misses. If all data were initialized dynamically, for

example, possibly the compiler could generate special “first write” instructions.

It is harder for us to imagine how to drive the compulsory misses for code to

zero.

- Is it time to forgo the model that access time is uniform to all parts of the address

space? It is false for DSM and other scalable multiprocessor schemes, so why

not for single processors as well? If we do this, can the compiler explicitly

manage a smaller amount of higher speed memory?

- Are there any new ideas for how to trade computation for storage?

Alternatively, can we trade space for speed? DRAM keeps giving us plenty of

the former.

- Ancient machines like the IBM 650 and Burroughs 205 used magnetic drum as

primary memory and had clever schemes for reducing rotational latency to

essentially zero — can we borrow a page from either of those books?

Hitting the Memory Wall: Implications of the Obvious

Appeared in Computer Architecture News, 23(1):20-24, March 1995. 3

Figures 1-3 explore various possibilities, showing projected trends for a set of perfect or

near-perfect caches. All our graphs assume that DRAM performance continues to increase

at an annual rate of 7%. The horizontal axis is various cpu/DRAM performance ratios, and

the lines at the top indicate the dates these ratios occur if microprocessor performance (µ)

increases at rates of 50% and 100% respectively. Figure1 assumes that cache misses are

currently 4 times slower than hits; Figure1(a) considers compulsory cache miss rates of

less than 1% while Figure1(b) shows the same trends for caches with more realistic miss

rates of 2-10%. Figures 2 is a counterpart of Figure1, but assumes that the current cost of

a cache miss is 16 times that of a hit.

Figure3 provides a closer look at the expected impact on average memory access time for

one particular value ofµ, Baskett’s estimated 80%. Even if we assume a cache hit rate of

99.8% and use the more conservative cache miss cost of 4 cycles as our starting point,

performance hits the 5-cycles-per-access wall in 11-12 years. At a hit rate of 99% we hit

the same wall within the decade, and at 90%, within 5 years.

Note that changing the starting point — the “current” miss/hit cost ratio — and the cache

miss ratesdon’t change the trends: if the microprocessor/memory performance gap

continues to grow at a similar rate, in 10-15 years each memory access will cost, on

average, tens or even hundreds of processor cycles. Under each scenario, system speed is

dominated by memory performance.

Over the past thirty years there have been several predictions of the eminent cessation of

the rate of improvement in computer performance. Every such prediction was wrong. They

were wrong because they hinged on unstated assumptions that were overturned by

subsequent events. So, for example, the failure to foresee the move from discrete

components to integrated circuits led to a prediction that the speed of light would limit

computer speeds to several orders of magnitude slower than they are now.

Hitting the Memory Wall: Implications of the Obvious

Appeared in Computer Architecture News, 23(1):20-24, March 1995. 2

First let’s assume that the cache speed matches that of the processor, and specifically that it

scales with the processor speed. This is certainly true for on-chip cache, and allows us to

easily normalize all our results in terms of instruction cycle times (essentially saying tc = 1

cpu cycle). Second, assume that the cache is perfect. That is, the cache never has a conflict

or capacity miss; the only misses are the compulsory ones. Thus is just the

probability of accessing a location that has never been referenced before (one can quibble

and adjust this for line size, but this won’t affect the conclusion, so we won’t make the

argument more complicated than necessary).

Now, although is small, it isn’t zero. Therefore astc andtm diverge,tavg will grow

and system performance will degrade. In fact, it will hit a wall.

In most programs, 20-40% of the instructions reference memory [Hen90]. For the sake of

argument let’s take the lower number, 20%. That means that, on average, during execution

every 5th instruction references memory. We will hit the wall whentavg exceeds 5

instruction times. At that point system performance is totally determined by memory speed;

making the processor faster won’t affect the wall-clock time to complete an application.

Alas, there is no easy way out of this. We have already assumed a perfect cache, so a bigger/

smarter one won’t help.We’re already using the full bandwidth of the memory, so

prefetching or other related schemes won’t help either. We can consider other things that

might be done, but first let’s speculate on when we might hit the wall.

Assume the compulsory miss rate is 1% or less [Hen90] and that the next level of the

memory hierarchy is currently four times slower than cache. If we assume that DRAM

speeds increase by 7% per year [Hen90] and use Baskett’s estimate that microprocessor

performance is increasing at the rate of 80% per year [Bas91], the average number of cycles

per memory access will be 1.52 in 2000, 8.25 in 2005, and 98.8 in 2010. Under these

assumptions, the wall is less than a decade away.

1 p–()

1 p–()

Hitting the Memory Wall: Implications of the Obvious

Appeared in Computer Architecture News, 23(1):20-24, March 1995. 1

Hitting the Memory Wall: Implications of the Obvious

Wm. A. Wulf
Sally A. McKee

Department of Computer Science
University of Virginia

{wulf | mckee}@virginia.edu

December 1994

This brief note points out something obvious — something the authors “knew” without

really understanding. With apologies to those who did understand, we offer it to those

others who, like us, missed the point.

We all know that the rate of improvement in microprocessor speed exceeds the rate of

improvement in DRAM memory speed — each is improving exponentially, but the

exponent for microprocessors is substantially larger than that for DRAMs. The difference

between diverging exponentials also grows exponentially; so, although the disparity

between processor and memory speed is already an issue, downstream someplace it will be

a much bigger one. How big and how soon? The answers to these questions are what the

authors had failed to appreciate.

To get a handle on the answers, consider an old friend — the equation for the average time

to access memory, wheretc andtm are the cache and DRAM access times andp is the

probability of a cache hit:

We want to look at how the average access time changes with technology, so we’ll make

some conservative assumptions; as you’ll see, the specific values won’t change the basic

conclusion of this note, namely that we are going to hit a wall in the improvement of system

performance unless somethingbasic changes.

tavg p tc× 1 p–() tm×+=

Appeared in Computer Architecture News, 23(1):20-24, March 1995

Hitting the Memory Wall:
Implications of the Obvious

Wm. A. Wulf and Sally A. McKee
{wulf | mckee}@virginia.edu

Computer Science Report No. CS-94-48
December, 1994

