Leopard 2A6, with the new Rheinmetall 120mm L/56 gun. (Photo: Krauss-Maffei Wegmann GmbH.)


The development of the Leopard 2 MBT can be traced back to a project started in the 1960's. At this time Germany and the United States were still working on the MBT-70 program, so this project had a very low priority.

While Germany and the United States were developing the MBT/KPz-70, their agreement did not allow a parallel national tank program, but when the Leopard 1 MBT was introduced into service in 1965 Porsche was awarded a contract to develop improved components to increase its combat effectiveness to the standard demanded by the MBT/KPz-70. This program lasted until 1967, when the contract expired, and became known as 'Vergoldeter Leopard' or 'Gilded Leopard'.
When the first cracks appeared in 1967 in the German/American cooperation program for joint development of the MBT/KPz-70, the German Ministry of Defense decided to continue and to increase the development of the 'Vergoldeter Leopard', which later became known as 'Keiler' (Wild Boar).

Krauss-Maffei of Munich was chosen as the main contractor, with Porsche involved in the development of the chassis and Wegmann in that of the turret. In 1969 and 1970 two prototypes (ET 01 and ET 02), both powered by the 10 cylinder MB 872 engine, were built for further evaluation. In late 1969, with the end of the development program for the German/American tank, the German Office for Defense Technology and Procurement initiated a study to save at least the majority of the MBT/KPz-70 development program. This was an attempt to combine parts of the abandoned MBT/KPz-70 program with components of the experimental tank, and became known as 'Eiler' (Boar) but never reached prototype status.

In early 1970, the German Ministry of Defense recommended the development of the 'Vergoldeter Leopard' to be continued with the adoption of the MTU engine developed for the MBT/Kpz-70 in order to take advantage of the further experience that had already been acquired with it. Another seven vehicles were ordered, with Krauss-Maffei again chosen as the main contractor.

The prototypes looked at first glance very much like the Leopard 1 A4, but with a wedge-shaped bow and an exhaust grille moved to the rear plate. The roadwheels came from the MBT/KPz-70, and the return rollers from the Leopard 1. The engine also came from the MBT/KPz-70, a 12 cylinder MTU MB-873 Ka-500 water-cooled multi-fuel four-stroke engine, together with its 20 kW generator, gearbox, air filters, and the cooling and braking systems, forming a compact group that could be easily replaced in 15 minutes. Ten of the seventeen turrets built were fitted with a 105 mm smooth bore gun while the remaining seven had a 120 mm smooth bore gun, both designed and produced by Rheinmetall.
When the first analysis of the Yom Kippur War of 1973 became available, it became clear that increased armor protection would be a decisive factor in the future. The outcome was a decision of upgrade the Leopard 2 to MLC 60 (Military Loading Class 60 tons), which would allow increased armor, and to modify one of the turrets with a new multi-layer type of armor. This resulted in a breakthrough in the Leopard 2 program and the first step towards the Leopard 2 AV.

During 1973, negotiations began between the United States and Germany to standardize certain components of both nations main battle tanks of the eighties. As a result of this, by 1976 it was agreed to study how Leopard 2 could be modified to meet US performance and constraints. Based on the altered German and US military demands, Porsche, Krauss-Maffei, and Wegmann designed and built the Leopard 2 AV (Austere Version).

The Leopard 2 Austere Version prototype.

Modifications included the new spaced armor on the hull and a new turret with a less sophisticated fire control system. Two chassis and three turrets were built, and were ready in 1976. The first prototype had a turret with a Hughes fire control system and a L7A3 105 mm main gun. The second one was equipped with the same gun, but provisions were made to allow a quick adoption of the Rheinmetall 120 mm smooth bore main gun. The third turret had a German fire control system, including the EMES 13, and was to be used in the German test program. An additional turret was built and was identical as the third, but had the Rheinmetall 120 mm smooth bore main gun installed from the beginning.

The Leopard 2 AV was originally intended to be tested as the same time with the XM1, but the German modification program took longer than expected. The US Army therefore proceeded with the evaluation of the XM1 prototypes built by Chrysler and General Motors, and ultimately decided to launch full-scale development of the Chrysler design.

However, the German prototypes arrived in the US by the end of August 1976 and comparative tests between the Leopard 2 AV and the XM1 prototypes were done at Aberdeen Proving Grounds, lasting until December 1976. The US Army reported that the Leopard 2 AV and the XM1 were comparable in firepower and field mobility but the XM1 was superior in armor protection, and so the XM1 was selected. After the comparative test the Leopard 2 AV prototypes were returned to Germany for further evaluation tests.

In September 1977 the German MoD formally decided to go ahead with plans for production of 1,800 Leopard 2, which were to be delivered in five batches. From the original group of companies bidding for the contract, Krauss-Maffei was chosen as the main contractor and systems manager. MaK became sub contractor and production was to be shared between the two companies on the basis of 55% for Krauss-Maffei and 45% for MaK. Wegmann, as turret integrator, received full responsibility for coordination the integration of the EMES 15 fire control. The EMES 15 fire control was developed by Hughes in cooperation between Krupp Atlas Elektronik, with the 120 mm smooth bore high-performance main gun supplied by Rheinmetall with the turret.

Without doubt, at the time of its introduction (1979), the Leopard 2 was the most advanced tank in the world. The Germans succeeded in designing a tank with high success in all three areas of tank design: mobility, firepower, and armor protection.

Until then, tank designers had only been able to achieve two of these objectives at once. The British Chieftain, for instance, had a pretty good gun and good armor, but very poor mobility. At the other end of the scale was the French AMX-30, which had good mobility, an adequate gun, but weak armor.

The Leopard 2 was the most advanced tank in the world back in 1979/80. The Germans have suceeded in designing a tank with high success in all three areas of tank design: mobility, firepower, and armor protection. The tank above is from the first production series.

A total of 380 Leopard 2 were built in the first batch, 209 by Krauss-Maffei and 171 by MaK, with the first six delivered in 1979 to Kampftruppenschule 2 in Münster. Another 100 were delivered in 1980 and 229 in 1981, replacing the M48A2G in units among I (GE) Corps. The first Leopard 2 went to Panzerbattalions 31, 33 and 34 of 1 Panzerdivision, with partially parallel delivery to Panzerbattalions 81, 85 and 84 of 5 Panzerdivision. The Leopard 1s then in service were passed to the Panzerbattalions of the Panzergrenadier Divisions, were they replaced the M48A2G. By 1982 production was running at 300 a year, with the last first batch Leopard 2 delivered in March of that year.

The combat weight of the Leopard 2 is 55,000 kg, empty weight being 52,000 kg, and its hull has spaced multi-layer armor. The running gear consists of seven dual rubber-tyred road wheels and four return rollers per side, with the idler wheel at the front and drive sprocket at the rear.
Torsion bar suspension is employed, with advanced friction dampers provided. The Diehl 570F tracks, with rubber-bashed end connectors, have removable rubber pads and use 82 links on each track. For use in icy ground, up to 18 rubber pads can be replaced by the same number of grousers, which are stored in the vehicle's bow when not in use. The first four sessions of the side skirts are heavily armored, and must be raised for rail transport. The remaining sessions are made of standard rubber and metal fabric and are hinged to swing upward if neccessary.

Leopard 2 In The Woods - Photo courtesy of Scott Cunningham

The driver's station is located at the front, offset to the right of the vehicle's center line. A large, pintle-mounted lift-and-swing type hatch is provided for the driver and opens to the right. There are two observation periscopes in the driver's hatch, plus one to the left of his section, for use when driving closed down. The central periscope (in the hatch) can be exchanged for a passive IR-sight for night operations. An escape hatch is provided under the driver's seat.

The turret, incorporating multi layer armor, is mounted in the center of the hull and is manned by the commander and gunner in the right half, with the loader in the left half. The commander and the loader each have a circular hatch, opening to the rear, and six periscopes provide all-round vision for the commander. Both hatches have ring mounts for the 7.62 mm MG-3 air defense machine gun, though it is normally installed on the loader's hatch.

Leopard 2A4 of Panzerbattalion 393, December 1995. CMTC Hohenfels.

The 120 mm Rheinmetall main gun is fully stabilized in both azimuth and elevation, and the WNA-H22 electro-hidraulic gun control system is fitted. The gun fires two types of ammunition, both developed by Rheinmetall APFSDS-T, known as DM-33 KE (Kinetische Energy), and HEAT-MP-T, known as DM-12 MZ (Mehrzweck = multipurpose), both types having combustible cases. 27 rounds of 120 mm ammunition are stored in a special magazine in the forward section of the hull, to the left of the driver's station - additional 15 (making a total of 42) are stored in the left side of the turret bustle, and separated from the fighting compartment by an electrically operated door. Should the ammunition in the bustle be hit, blow-off panels in the turret roof would direct any explosion upwards. A co-axial 7.620mm MG 3is mounted to the left of the main gun and 4,750 rounds of machine gun ammunition are carried.

Leopard 2 A2 (modified first batch), 4th Kompanie, Panzerbattalion 33, 1st Panzerdivision, Luttmersen, 1988.

The thermal sight for the gunner's EMES 15 primary sight was not ready during production of the first batch, though all vehicles were prepared to be so equipped at a later stage. To provide an improvised night fighting capability for first batch vehicles, the Panzer-Ziel-und-Beobachtungsgerät (PZB) 200ow light TV system (LLLTV) was temporarily fitted to 200 Leopard 2 The EMES 15/FLT-2 fire control system consists of:

  1. gunner's primary sight with mirror stabilized in azimuth and elevation
  2. laser transmitter and receiver
  3. thermal imaging system and eye piece assembly
  4. commander's and gunner's control units
  5. commander's display unit
  6. computer control unit
  7. commander's joy-stick hand control
  8. digital ballistic computer, which calculates the relevant data for a firing solution
  9. cross wind velocity sensor (first batch only)
  10. gun elevation sensor
  11. laser electronics box
  12. cant angle sensor
  13. interconnecting cable set

The gunner also has an auxiliary telescope FERO-Z18 with a magnification of x8, mounted co-axially to the right of the main gun. An independent and fully stabilized PERI R-17 primary panoramic sight, made by Carl Zeiss and with magnifications of x2 and x8, is installed at the front of the commander's station. This sight can be traversed through 360 degrees and allows the commander to override the gunner's control if necessary. An ammunition supply hatch opening outward, is provided in the left side of the turret side. Two groups of four 76 mm Wegmann smoke mortars are mounted on either side of the turret and can be electrically fired either as single rounds or in salvos of four.
Two SEM 25/SEM35 radio sets are fitted behind the commander in the rear right of the turret bustle. The radio antennae are mounted to the left and right behind crew stations.

The engine compartment is at the rear, separated from the fighting compartment by a fireproof bulkhead. The MTU MB 873 Ka-501 liquid-cooled 47.6 litre V-12 cylinder 4-stroke exhaust turbo-charged diesel engine develops 1,104 kW (1,500 PS) at 2,600 rpm. It is started by eight 12-volt/125 Ab batteries and has a 24-volt electrical system. The Leopard 2 maximum road speed is 68 km/h, though it is limited to 50km/h during peacetime, and top reverse is 31 km/h.
Fuel consumption is estimated at around 300 litres per 100 km on roads and 500 litres per 100 km across country. The four fuel tanks have a total capacity of approximately 1,160 litres, giving a maximum road range of about 500 km. The Renk HSWL 354 hydro-kinetic planetary gearbox with integral service brake is coupled to the engine, forming a compact power pack which can be exchanged within 15 minutes. Four forward and two reverse gears are available through a torque converter, enabling the Leopard 2 to turn on the spot if required. The transmission automatically changes gear within the range pre-selected by the driver. The cooling air outlet grille is very prominent across the upper section of the rear plate, and was reinforced after the 28th vehicle built. Exhaust grilles with vertical bars are located to the left and right of the de-airation vents. A fault detection system detects any technical malfunctions.

Four 9 kg Halon fire extinguisher bottles are installed on the right behind the driver's station. The bottles are connected to pipes and hoses and are activated automatically by the fire detection system, when temperatures rise above 180° F inside the fighting compartment, or manually via a control panel in the driver's compartment. An extra 2.5 kg Halon fire extinguisher (HAL 2.5) is stored on the floor beneath the main gun. The Leopard 2 has a self-contained NBC protection system, which produces up to 4 mbar (0.004 kp/cm²) over pressure inside the vehicle.

The Leopard 2 is able to ford water obstacles 1.20 m deep (wading) without any preparation, and to ford at a depth of 2.25 m (deep wading) with special preparation. About 15 minutes preparation is required to get the tank ready for crossing water obstacles at a depth of 4 ma (underwater driving), including the fitting of a special three-piece snorkel to the commander's cupola.

Production of the second batch began in March 1982 and ended in November 1983. Of the 450 vehicles built, 248 were built by Krauss-Maffei and 202 by MaK. The most significant changes were the deletion of the cross wind velocity sensor, and that the protection over the optical blocks at the commander's station was now faceted shape. The tank thermal sight, based on the common modules provided by Texas Instruments and built by Carl Zeiss, was now fitted to the gunner's EMES 15 primary sight and the gun control system was included in the fault detection system. The fuel filters were repositioned, considerably reducing the time required for refuelling. An external head-set connection was added to the left rear of the turret side. The racks of ammunition stowage were identical to those that were to be fitted to the M1A1 Abrams. Two foot boards were attached to the power pack, thus avoiding damage to the steering system and the electrical wiring and plugs during maintenance with the deck removed. The tow cable clamps on the rear deck were repositioned and the cables, now 5 m long, were crossed on the rear plate. Due to these numerous changes, this version was designated the Leopard 2 A1 .

The 300 Leopard 2 of the third batch were built between november 1983 and November 1984, 165 by Krauss-Maffei, and the remaining 133 by Mak. The most notable changes were the addition of a deflector, which raised the position of the commander's PERI R-17 primary panoramic sight by 50 mm, and a larger cover plate fitted on top of the NBC protection system. These modifications were subsequently also carried out to the second batch vehicles. The third batch vehicles were also designated Leopard 2 A1 .

The fourth batch was built between December 1984 and December 1985. Of the 300 vehicles delivered, 165 were built by Krauss-Maffei, and 135 by MaK. The most significant changes were the installation of new digital SEM 80/90 VHF radios and revised exhaust grilles with circular bars. The ammunition supply hatches were welded shut (risk of leaking if turret was hit). The vehicles of this batch were designated the Leopard 2 A3 .

Leopard 2A3, Panzerbattalion 123, Panzerbrigade 12, October 1990.

Between December 1985 and March 1987, 370 vehicles were delivered, with 190 being built by Krauss-Maffei, and the remaining 180 by MaK. In this batch, the fire control was fitted with a digital core to facilitate the use of new ammunition, and to improve the crew's survivability a fire and explosion suppression system developed by Deugra was installed. The return rollers were repositioned. The turret protection level was increased to more than 700mm for KE and 1000mm for HEAT. The vehicles of this batch were designated Leopard 2 A4 .

Although only five batches were originally intended to be built, an order for a sixth batch of 150 vehicles was placed in june 1987, and 83 were built by Krauss-Maffei and 67 by MaK, between January 1988 and May 1989. New features in this batch were the installation of maintenance-free batteries, the introduction of Diehl 570FT tracks, and the use of zinc cromate free paint. The central warning light was now installed in a small housing on the hull, in front of the driver's station, for better observation by the driver when driving head-out.The ammunition supply hatch in the left side of the turret was deleted. The vehicles of this batch were also designated Leopard 2 A4 .

Production of 100 seventh batch vehicles began in May 1989 and ended in April 1990, with 55 built by Krauss-Maffei and 45 by MaK. The vehicles of this batch were identical to the late sixth batch vehicles and also called Leopard 2 A4 .

Leopard 2A4 (seventh batch), Panzerbattalion 214, 7.Panzerdivision, CMTC Hohenfels, December 1995.

Between January 1991 and March 1992 75 vehicles were delivered, with 40 built by Krauss-Maffei and 34 by MaK. Changes included slight modifications of the base mounts for the smoke mortars, and later on a collimator for the muzzle reference system was fitted to the right side of the 120 mm main gun, near the barrel's end, and was subsequently retrofitted to the vehicles of previous batches. The muzzle reference system allows a quick check for the gunner of the distortion of the gun barrel in relation to the sight optics. The vehicles of this batch were also designated Leopard 2 A4 .

Leopard 2A4 (seventh batch), Panzerbattalion 214, 7.Panzerdivision, CMTC Hohenfels, December 1995.

The final Leopard 2 A4 of the eight batch was delivered to the Gebirgs-Panzerbattalion 8 (Mountain Tank Battalion) on 19 March 1992, in a official ceremony in Munich.

After delivery of the last eight batch vehicle, there were 2.125 Leopard 2 A4 in service with the Bundeswehr. The Leopard 2 was designed to meet the requirements of modern mobile combat to counter the Soviet threat to Central Europe. It uses advanced technologies to achieve enhanced performance, with optimal results in the combination of armor protection, firepower, and mobility which place it among the leaders in modern tank design.

Leopard 2A5 KWS II: new turret and third generation composite armor.

In a modern world the pressure for modernization is a matter of course, but in the field of military technology it is a bitter reality. With the appearence of modern and capable Soviet tanks such as the T-64 B and T-80 B, equipped with a high-performance 125 mm smoothbore gun capable of firing guided missiles, the development of an even better Leopard 2 was demanded. However, cooperation between nations over their tank industries can be difficult. After the cancellation of a joint French-German tank development project in November 1982, Germany extended the concept phase for a Leopard 3 in March 1983 to last until 1996. Several alternatives had to be examined, including production of additional Leopard 2, improvement of the Leopard 2, development of a new turret for the Leopard 2 with a crew of four or with a crew of three with an automatic loader, or still the development of an entirely new hull and turret.

The development of improved components for the Leopard 2 was finally favoured, and in 1989 the Leopard 2 KVT (Komponent enversuchsträrager - component trial vehicle) was built and tested. This vehicle was fitted with additional armor, spall liners in the fighting compartment, a new electrically-driven sliding hatch for the driver, new hatches for the commander and loader, and increased reactive and passive armor on the turret roof. The EMES-15 was raised and received an armored housing, and the PERI-17, now including an independent thermal sight channel, was relocated to the left rear of the commander's section. This prototype had a total weight of 60,500 kg. After the trials, this vehicle was converted into the IVT (Instruments-Versuchsträrager - experimental vehicle for instruments) and joined the IFIS (integrated command and information system) development program carried out between 1988 and 1992, which researched in cooperation with the US the more efficient way to the management and use of gathered information. After evaluation of the development tests with with the KVT, two prototypes were built in 1991 by Krauss-Maffei for the improvement program, known as KWS.

The overwhelming political changes within the Eastern Block, and the resulting decreasing defense budgets definitely modified the improvement program. An alternative improvement program was initiated, divided into three stages, and known as KWS I, KWS II, and KWS III (the Roman numerals do not denote chronological order).

Leopard 2A5 KWS II, Panzerbattalion 33, 7.Panzerdivision, Bergen-Hohne, November, 1997.

KWS I consisted of the adoption of a longer L/55 120 mm main gun and the use of improved ammunition, having an increased muzzle velocity of 1,800 m/s.

KWS II was the development of increased armor protection for the crew and improved command and control system capabilities.

KWS III consisted of the adoption of a 140mm main gun.

On October 1991, Switzerland, the Netherlands, and Germany decided for cooperation in a development program for KWS II. The first Leopard 2 A5 were officially delivered to the German Army School on 30 November 1995. Chassis of the sixth, seventh, and eight batches were to be used for the conversion program and to receive reworked and modified turrets taken from tanks of the first four batches. Modernization of the chassis were to be carried out by Krauss-Maffei and MaK while Wegmann and Rheinmetall became responsible for the turrets.

The most significant change to the hull of the Leopard 2 A5 is the new driver's hatch, which is now electronically operated and slides to the right to open. A deflector is mounted to the left of the driver's station, with stowage brackets for camouflage support poles. A camera mounted above the rear cooling air outlet is connected to a monitor on the driver's dashboard to enable him to reverse at high speed, without needing directions for the commander. The road wheels are now made of steel, replacing those made of aluminium.

Leopard 2A5 KWS II, Panzerbattalion 33, 7.Panzerdivision, CMTC Hohenfels, April 1997.

The turret front and sides are fitted with wedge-shaped add-on armor in sections, which can easily be replaced by field workshops if hit or, at a later stage, be replaced by more advanced armor. The side panels of this extra armor are hinged to swing forward, neccessary when engine is to be replaced. The gun mantlet was completely redesigned, and additional stowage boxes are fitted to the turret rear and sides. The interior of the turret is now fitted with a spall liner for improved protection against splinters. The electro-hydraulic gun control and stabilization system was replaced by an all-electric system. The optical FERO Z-18 auxiliary telescope was relocated to a position on top of the gun mantlet, and the commander's PERI-R 17 panoramic sight has been moved to the left rear of the commander's station. The commander's improved independent sight now includes a thermal channel whose image is displayed on a monitor on the commander's station. The laser range data processor was modified so that the Leopard 2 A5 can now engage helicopters with APFSDS-T ammunition, and a GPS vehicle navigation system is built in with the GPS antenna installed at the rear of the turret roof.

The additional armor has increased the combat weight of the Leopard 2 A5 to 59,500 kg, which has not affected the mobility, as the vehicle was designed to accept such an increase.

Leopard 2 A6 with the new 120mm L/55
The Leopard 2A6: New 120mm L/55 gun.

A new smoothbore gun, the 120 millimeter L55 Gun, has been developed by Rheinmetall GmbH of Ratingen, Germany to replace the shorter 120 millimeter L44 smoothbore tank gun on the Leopard 2. The extension of the barrel length from calibre length 44 to calibre length 55 results in a greater portion of the available energy in the barrel to be converted into projectile velocity.

Leopard 2 120mm Tank Ammunition.

The L55 smoothbore gun, equipped with a thermal sleeve, a fume extractor and a muzzle reference system, is compatible with current 120mm ammunition and new high penetration ammunition.

An improved kinetic energy ammunition known as LKE II was developed as a result of a Tactical Requirement issued in November 1987, and uses the longer gun barrel. The effect of the kinetic energy projectile on an enemy target is achieved by 1) the penetrator length and projectile mass and the impact velocity and 2) the interaction between the projectile and the target. The penetrator material is heavy tungsten powder in a monoblock structure. The improved kinetic energy ammunition has higher muzzle energy and recoil forces.

Rheinmetall's latest ammunition developments for the Leopard 2 include the
(1) DM 43 AI 120mm KE cartridge,
(2) DM 53 120mm LKE cartridge and
(3) the new 120 MP cartridge.


Leopard 2A4, 41(NL) Tankbataljon, 41(NL) Lichte Brigade, Weser-Emsland, June 1993.
  • Swiss Pz87 : The Pz 87 Leopard 2 differs from its German counterpart in having a slightly altered turret rear, with a slope at the rear left side, and an additional stowage box for the camouflage net on the right turret rear. On the left turret rear is a box containing the external head-set connection for the crew's intercomm. Swiss-made WF Bern 7.5 mm MG 87 machine guns are installed, one mounted co-axially to the main gun, and one fitted to the loader's station on a Swiss-built MG mount for air-defense. AN/VCR 12 radios of US design, produced under license, are installed. On the left and right sides of the turret, next to the Nebelwerfer 87 smoke mortars, are two tubular cases for interim storage of hot exchanged machine guns barrels. Three grousers are stowed on the left turret side and a further seven on the right, which with the 18 carried on the bow brings the total to 28 grousers for use on soft or snowy ground instead of the same number of rubber track pads. Switzerland introduced the extra noise-reducing exhaust mufflers, attached to the vehicle's rear, for its entire fleet of KPz 87. All Pz87 carry the standard German camouflage scheme. Switzerland participated in the tri-lateral KWS II improvement program, and so will upgrade its Pz87 to the Leopard 2 A5 in the next century.
  • Dutch Leopard 2 : The Leopard 2 NL differs from its German counterpart in having a Dutch-designed smoke mortar system with six barrels on each side, a Dutch-built passive night periscope for the driver, a 7.62 mm FN MAG machine gun installed co-axially to the main gun and one further MAG for air defense, and Philips radios with US-style antenna bases. In January 1993, the Royal Netherlands Army announced plans to phase out 115 of its 445 Leopard 2 NL, which were sold to Austria, and to upgrade the remaining 330 vehicles to the standard of the German Leopard 2 A5. The first improved Leopard 2 NL were delivered to the Royal Netherlands Army in May 1997. These vehicles use the same German camouflage scheme, but retain the Dutch radios, antenna bases, FN MAG machine guns and smoke mortars. It is expected that the Netherlands will adopt the L/55 main gun for their Leopards A5 NL at a later stage.
  • Leopard 2A5/Leopard 2 (Improved) : Recent upgrade with spaced armor added to turret front, and increased armor on hull and side skirts. Other improvements include improved stabilization, suspension, navigation, fire control, and hatch design.
  • Leopard 2E : A derivative of the version A5a developed under a program of co manufacture between the industries of Spain and Germany. The program is developed within the frame of collaboration decided in 1995 between the Ministries of Defense of both countries, in which also the cession of use by a period of five years of 108 Leopard 2A4 from the German Army to the Spanish was. On 23 December 1998 the Spanish Cabinet approved the co manufacture contract, designating Santa Bárbara Blindados (SBB - Armored company Santa Barbara) as the main contractor. The Leopard 2E/ER and its elements will be made totally in Spain, with German technological support. SBB, a branch of the National Company Santa Barbara (Empresa Nacional Santa Bárbara -ENSB) in Seville, is responsible for the final assembly, integration and tests of the vehicles.
  • Stridsvagn (Strv) 121 : In 1994 and 1995 a total of 160 Leopards 2 A4 of the first five batches, taken from the German stocks were delivered to the Swedish Army. Officially designated the Stridsvagn 121, the first vehicle arrived in Sweden in February 1994. There were no noticeable changes or modifications carried out to these vehicles, used by the Swedish mechanized brigades.
  • Stridsvagn (Strv) 122 : The Swedish Defense Materiel Administration (FMV) signed a contract with Krauss-Maffei for the manufacture and delivery of 120 Leopard 2-S officially designated as the Stridsvagn 122 by the Swedish Army. The contract also includes the supply of training, maintenance, spare parts, documentation, simulators, and an option to purchase 90 additional Strv 122, Bueffel ARV as well as interfaces for equipment already used by the Swedish Army. While Krauss-Maffei is the prime contractor, the chassis was sub-contracted to Hägglunds in Sweden. Wegmann, the prime contractor for the turret, sub-contracted the work to Bofors, and work for the fire control system was sub-contracted from STN Atlas Elektronik (formerly Krupp Atlas Elektronik, KAE) to Celsius Tech Systems AB in Sweden. Bofors will also manufacture 50 per cent of the 120 mm main guns, while Rheinmetall will produce the other half.
    The Stridsvagn 122.
    The Stridsvagn 122 is the most sophisticated version of the Leopard 2 in current service. The front hull and glacis are fitted with additional armor plates, and the inside of the tank is completely surrounded by liner, to reduce the effects of being hit by projectiles, hollow charges or fragments. For night driving the driver uses the same type of passive night sight used by the CV 90 Infantry Fighting Vehicle. Due to the heavier combat weight of 62,000 kg, compared to the 59,500 kg of the German Leopard 2 A5, stronger torsion bars (derived from the ones used with the Panzerhaubitze 2000) are installed and reinforced brake disks are provided. All fuel tanks have a special additional explosion-supressing filling liquid. The engine compartment is constantly cooled to reduce the IR signature, and heat sensors installed in the engine compartment would automatically cut off fan and air intake operation if the Strv 122 should come under attack by napalm. the roadwheels are fitted with armored wheel hubs.
    The turret front and sides have the same wedge-shaped add-on armor as the Leopard 2 A5 but, unlike the latter, the turret roof and the commander's and loader's hatches are also up-armored. Due to the extra weight, both turret hatches were of the electrically-driven sliding type, but this was abandoned because of the problem of opening the hatches if there was a power out. Now the turret hatches are handcrancked with a gear, so its no problem to operate them even if the tank is in a bad angle. The commander's periscope has an manually operated protective flap, which would fold up to protect the optic when desired and rests in front of it when not in use. The digital fire control computer carries data for up to 12 different rounds, including APFSDS-T, HEAT-MP-T, HEAT-GP, smoke, anti-helicopter and training ammunition. However, at the time this is being written (August, 2001), only five types of ammunition are being used: 120mm APFSDS-T, 120mm HE-T, 25mm APFSDS-T, 25mm HE, and 120 mm TPFSDS-T. The 25mm is for a barrel insert system, and used for basic training on closer fire ranges. Smoke, HEAT and helicopter rounds are not in use. The helicopter round is under development. The laser rangefinder integrated in the EMES-15 uses the eye-safe Raman-shifted laser. The Strv 122 is the first MBT in Europe equipped with the advanced tank command and control system (TCCS). On the left and right sides of the turret the GIAT Industries GALIX vehicle protection system with 80 mm calibre mortars is installed, able to launch smoke, decoy, flare and fragmentation rounds. There are 36 grousers (snowgrips), 18 for each track, for use on soft ground instead of the same number of rubber track pads.There are 18 grousers stored on the back of the turret and 18 are stored inside the left turret. The Stridsvagn 122 is painted in a disruptive camouflage scheme of green, light green, and black colours.
  • Austrian Leopard 2 : In 1997 Austria purchased 115 Leopard 2 formerly used by and phased out by the Royal Netherlands Army.
  • Danish Leopard 2 : In July 1997 a contract was signed between Danish officials and Krauss-Maffei for the delivery of 52 Leopard 2 A4 from German stocks.
  • Leopard 2 A6 (EX): As its newest Leopard 2 variant, KMW is presenting the Leopard 2 A6 EX MBT, which includes the longer L/55 gun, an auxiliary engine, improved mine protection and an air-conditioning system. Superior firepower is guaranteed by the 120 mm smooth-bore gun of the Leopard 2 A6 EX. The development of the L/55 gun, a more powerful, longer version of the main armament and newly developed types of ammunition provide better penetrating power and permit target engagement at longer ranges.
  • Leopard 2 A6 with the new 120mm L/55
    The latest version of the Leopard MBT is the Leopard 2 A6 EX.
    (Photo: Krauss-Maffei Wegmann GmbH.)


The Bueffel is capable of lifting 30,000 kg. and change the Leopard 2A5 powerpack within 35 minutes.
  • Bergepanzer 3 'Bueffel' ARV
    The first component studies for a new armored recovery vehicle (ARV), planned to the maintenance support for the new Leopard 2 which was soon to enter service, began in 1977. On the introduction of the Leopard 2 it soon became apparent that the Bergepanzer 2 A2 ARV (based on the Leopard 1 chassis) would not be powerful enough to provide adequate maintenance support under 24 hour combat conditions, so a development program for a new ARV was launched.
    The first experimental vehicle with a similar layout to th Bergepanzer 2 A2 and a wooden mock-up for an alternative internal lay-out, were ready in 1986. Two prototypes were ordered in 1987 and the experimental vehicle built up to the prototypes standard. The three prototypes were delivered in 1988 and underwent intensive tests, and in 1990 an order was placed for 75 Bergepanzer 3 'Bueffel' (Buffalo) ARV for the Bundeswehr and 25 Bergingstank 600 kN Bueffel for the Royal Netherlands Army (RNLA).
    MaK Systemgesellschaft mbH in Kiel was selected as the main contractor. Production was shared between MaK, with 55 vehicles built, and Krauss-Maffei, with 45 built.
    The Bergepanzer 3 Bueffel armored recovery vehicle is based on the chassis of the Leopard 2. The driver sits on the superstructure front with the commander behind him. Three large doors provide access to the inside of the vehicle. A fire extinguishing and suppression system, an NBC protection system, and deep fording equipment with bilge pumps are provided. For night driving the driver can replace one of his periscopes with a passive night sight. During peacetime the Bergepanzer 3 is operated by a crew of two, although space for a third crew member is provided. The engine compartment is at the rear, and the Bueffel uses the same powerpack of the Leopard 2.
    A large crane, with a lifting capacity of 30,000 kg. is installed at the right forward of the vehicle, the jib can be traversed 270 degrees. The crane has an electronic momentum limiter, which constantly calculates jib elevation, vehicle tilt, and load mass to prevent overloading. A Rotzler Treibmatic TR 650/3 winch is installed in the vehicle's forward section with an effective cable length of 180 m (33 mm in diameter) and the capacity to pull up to 35,000 kg, which can be doubled by using a pulley tackle.
    A complete powerpack can be carried in a special cradle on the engine deck. The large dozer/support blade at the front is lowered as a support to stabilize the ARV during winching or crane operation. The blade can also be used for obstacle and clearence or dozing operations. The Bueffel is equipped with a suspension lockout system. Electrical cutting and welding equipment is also provided. Further equipment includes various couplings and towbars, rapid connect and disconnect couplings for towing, and a self-recovery system. Armament consist of a 7.62 mm MG3 machine gun, primarily used for air defense, and 16 70 mm smoke mortars, with eight fitted in two groups of four at the front and eight in a row at the rear of the vehicle.
    Combat weight is 54,000 kg and the Bueffel has a towing capacity of 62,000 kg (MLC 70). Maximum achievable speed is 68 km/h, and 30 km/h in 2nd reverse gear. With a fuel capacity of 1,629 litres, the Bueffel has a maximum range of 650 km on roads and 325 km on across country. The Bueffel is capable of changing the powerpack of a Leopard 2 A4 in about 25 minutes, and with the Leopard 2 A5 about 35 minutes are required.

The Bueffel has a lifting capacity of 30,000 kg.

Kampfpanzer Leopard 2

The Leopard 2A6. (Photo: Krauss-Maffei Wegmann GmbH


  • Krauss-Maffei Wegmann GmbH
    Krauss-Maffei Wehrtechnik GmbH, the company's defense division, merged with Wegmann & Co. GmbH, Kassel, in a joint venture, Krauss-Maffei Wegmann GmbH & Co. KG, Munich (KMW). The merger was approved by the German anti-trust authority and became effective on January 1 1999, The defense division was disincorporated on December 31 1998. KMW is now a market and technology leader in the field of armored vehicles and well-positioned to operate successfully in an environment of growing internationalization of defense companies and shrinking national defense budgets.


  • Ametek Rotron - Brushless Motors, Fans and Blowers
  • AVITRONICS Pty Ltd - Laser Warning Systems for Combat Vehicles
  • Behr Industrietechnik - Cooling and Air-Conditioning Systems
  • BEI Precision Systems & Space Division - Optical Encoders, Scanners and Accelerometers
  • CelsiusTech Vetronics - Fire Control Systems
  • COMET GmbH - Battlefield Simulation Ammunition
  • Diehl Remscheid GmbH & Co - Armoured Vehicle Tracks
  • ERA Technology Ltd - Military Design and Development Consultancy
  • Evans & Sutherland - Visual Systems for Simulation
  • Giat Industries - Ammunition
  • LITEF GmbH - Land Navigation Systems
  • MaK System Gesellschaft MBH - Heavy Armoured Support Systems
  • MaK System Gesellschaft MBH - Land Systems
  • MPE Limited - Electrical Filters for EMC / RFI / EMP / HMP / TEMPEST
  • PIETZSCH Neue Technologien GmbH & Co. KG (PNT) - Defence Technology System and Component Development
  • RENK - Tank Transmission System
  • Rheinmetall W & M GmbH - Ammunition and Weapon Systems for Ground Forces
  • Rheinmetall W & M GmbH - Gun Systems and Weapon Components
  • RKS S.A. - Slewing Bearings and Special Bearings
  • SIGNAAL Communications - Tactical Communication Systems/Networks, Digital Vehicle Intercom Systems
  • SpanSet International - Lifting, Lashing and Personal Safety Systems
  • STN ATLAS Elektronik GmbH - Electronic Equipment and Systems
  • Weibel Scientific Ltd - Doppler Radar Systems

  • LEOPARD 2 Main Battle Tank 1979-1998 ; U. Schnellbacher, M. Jerchel and M.Badrocke; Osprey Military New Vanguard Series; ISBN 1-85532-691-4.


Army Technology - Current Projects Website

Flecktarn - The database of the German armed forces (Bundeswehr)

Military Analisys Network

Rheinmetall DETEC AG

Rheinmetall Landsysteme GmbH

Scott Cunningham's Armor in Action

The Unnoficial Swedish Army Page.

Krauss-Maffei Wegmann GmbH

Every bit of information on www.fprado.com/armorsite is for the purpose of information, criticism, comment, news reporting, teaching, scholarship, and/or research.

The ARMOR Site! is Copyright 1997-2002 Fabio Prado . All Rights Reserved.