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INTRODUCTION

Besides brittle materials, such as industrial ceramics and glass, as well as ductile
metals, such as titanium, the interest of light-weight armor designers has been increas-
ingly focused on composite materials, such as GFRP (Glass-Fiber Reinforced Plastic) in
the last years. Therefore, a classification of the protective power of these materials will be
helpful. The protective power of different inert materials against the KE threat (KE = Ki-
netic Energy) is generally evaluated by DOP experiments (DOP = Depth Of Penetration),
where the penetration in the considered test target (i.e. block of GFRP material plus steel
backing) is compared to the one achieved in a reference steel block of semi-infinite thick-
ness at the same impact velocity. An appropriate analysis of these ballistic results yields
equivalence factors quantifying the protective power of the material.

The constructive configuration which is often called confinement as well as the target
layer thickness influence the protective power of inert materials against the given threat
[1]. It is known from literature and from our own experiments that the equivalence factors
of brittle materials decrease with increasing block thickness [2, 3, 4], whereas ductile ma-
terials have constant values. Furthermore, it has been shown that the protective power of

The ballistic protection performance of thick GFRP blocks is investigated in
depth of penetration experiments with tungsten heavy alloy long rods at impact
velocities of about 1800 m/s. The formerly introduced doctile limit of the equi-
valence factor, which sufficiently describes the protective power of brittle and
ductile target materials, is successfully applied to GFRPs too. Unlike ductile or
brittle materials, the ballistic resistance of a thick GFRP block grows with in-
creasing penetration depth, and thus makes GFRP materials interesting for
light-weight armor applications. The corresponding increase of the target resis-
tance of the GFRP during the penetration process can be explained by the spe-
cial anisotropic behavior of the fabric layers. The growing bulge in front of the
projectile makes the tensile strength of the fibers increasingly effective in with-
standing the axial load.
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several brittle targets is all the higher as they are better confined [5, 6]. A ballistic material
parameter, called ductile limit of the volume equivalence factor, has been fonnd which
eliminates this configuration dependence and which allows a joint protective power rank-
ing of brittle and ductile materials [7, 8].

This investigation has two aims: firstly, the thickness- and confinement-dependent
protective power of different GFRPs is evaluated by applying the above-mentioned equi-
valence factor; secondly, a closer insight into the terminal ballistic behavior of thick
GFRP layers under high-velocity impact loading is given.

EXPERIMENTAL DESIGN

An APDSFS projectile (APDSFS
= Armor Piercing Discarding Sabot
Fin Stabilized) developed at ISL is
usod as KE-threat (Fig. 1). The upper
pictures show a photograph of the
projectile with its light metal sabots
and a sectional drawing of the pene-
trator. The lower tables give some
material parameters of the penetrator
material, its reference penetration
into RHA as a function of impact ve-
locity, and the parameters of the fit-
ting equation.

The GFRP material has been te-
sted in two configurations, called un-
confined and totally confined. Fig. 2
schematically shows the target set-up
for the DOP experiments. In the un-
confined configuration the GFRP
block is directly placed on an RHA
backing of semi-infinite thickness. In
the totally confined configuration it is
additionally encased in steel plates of
20 mm thickness. The hole in the
front plate allows comparable impact
conditions.

Layered target blocks of different
thicknesses and 200-mm-thick mono-
blocks are investigated with lateral
dimensions of 100 x 100 mm2.

The glass fibers of the GFRP un-
der investigation is placed into the
VE matrix in the form of a quadraxial
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Figure 1: KE Threat BMU G 154.

Figure 2: GFRP target for DOP experiments.

Figure 3: GFRP material parameters.



fabric as is seen in the schematic drawing in the top left of Fig. 3. An overview of some
constitutive data of the GFRP material is given in the tables to the right and below. It is
important to keep in mind that the values of Young’s modulus as well as the extensional
and the longitudinal wave velocities have significantly different values parallel and ortho-
gonal to the fiber directions. The anisotropic relation of both velocities is approx. 1.71.
With respect to the positions of the glass fiber layers in one LOS plane of the quadraxial
fabric, the axial/lateral velocity relation has an average value of 1.28. 

ANALYSIS OF THE DOP EXPERIMENTS

As seen in Fig. 2, a residual penetration Pres is measured in the RHA backing (density
ρref) behind the investigated GFRP target (total thickness tz, density ρ) and is compared to
Pref, the penetration depth of the projectile at the same velocity in the reference material
of semi-infinite thickness.

After the normalization of the two parameters tz and Pref in order to eliminate the ex-
perimentally caused scattering of the impact velocity, a layer of the reference material
tref,n can be defined as

tz,n = tz / Pref, Pres,n = Pres / Pref → tref,n = 1– Pres,n

which yields the same residual penetration Pres. Based on these quantities the above-men-
tioned ballistic space equivalence factor

Fs = tref,n / tz,n

describes the volume gain of the GFRP block under consideration as compared to the re-
ference layer. If the volume factor is multiplied by the density relation ρref /ρ, the mass
equivalence factor is obtained.

In former investigations on ceramic targets it has been found that the space equiva-
lence factor for vanishing block thickness should have the same limit value for all confi-
gurations [7]. This hypothesis leads to an appropriate approximation algorithm based on
an exponential fitting function

Fs = Fs(0) · exp (γ · tz,n)

where Fs(0) is the configuration-
independent fitting parameter [8].
The approximation coefficient γ de-
pends on both the material and the
target configuration. Fig. 4 shows
qualitative diagrams of the proposed
approximation  function Fs (left-hand
side) and of the resulting Pres,n (right-
hand side) dealing with hypothetical
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Figure 4: Equivalence factor and residual penetra-
tion for brittle, ductile and composite materials.



brittle, ductile and composite materials, in order to schematically describe different types
of penetration behavior and the dependence on target configurations. The thick horizontal
line in the Fs diagram marks the quasi-ductile penetration behavior which is also found in
the linear relation in the Pres,n diagram (γ= 0). The non-linear penetration curves repre-
sent brittle materials for γ < 0 (concave curves) and composite materials for γ> 0 (convex
curves). High absolute values of γ indicate large differences compared to a ductile pene-
tration behavior [5, 7].

Fs(0) was found to be the highest possible value of a brittle material which equals the
one occurring in an optimally confined target where the penetration behavior of a ductile
material can be reached. Consequently, it was called ductile limit of the space equivalence
factor for this kind of material [8].

For the GFRP material under consideration the dependence of the space equivalence
factor on target thickness and confinement is analyzed with the same approximation al-
gorithm to compare its penetration behavior to those of previously investigated ductile
and brittle materials. The convex curves in Fig. 4 anticipate the results for this composite
material which will be described in the following section.

RESULTS 

Protective Power

The results of the DOP experi-
ments with the considered GFRP ma-
terial are summarized in Fig. 5. The
diagram shows experimentally deter-
mined (tz,n,Fs)-data (dots) as well as
fitting corves Fs(tz,n) for the uncon-
fined and totally confined configura-
tion investigated.

It can be seen that the space equi-
valence factor increases with the tar-
get thickness in both configurations.
This means that a thick composite
block has a higher mean value of rela-
tive protective power than a thin one
or, in another interpretation, the target
resistance grows with the increasing
penetration depth.

On the other hand, the Fs(0) value
is relatively small compared to pre-
viously investigated brittle and duc-
tile materials which can be seen in the
mterial ranking of Fig. 6. Here, the
basic ballistic material parameter
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Figure 5: Volume equivalence factors as a function
of material thickness.

Figure 6: Ballistic material ranking, based on
Fs(0) valne of the space equivalence factor.



Fs(0) is plotted versus the density re-
lation ρref/ρ. Both the increasing
ductile limit of space equivalence and
the increasing density relation indi-
cate a growing protective power. The
hyperbolic lines for Fm(0)=const de-
fine different mass gain levels. It is
interesting to notice hardness armor
steel (HHAS), titanium the  and glass
have approximately the same mass-
related protection level: Fm(0) ≈ 1.5.

Therefore, GFRPs are materials
which can be usefully applied to
lightweight armor design.

Penetration Phenomena

It was found in the post-mortem analysis of the experiments that the entrance crater
diameter in the backing behind a GFRP block is significantly larger than the crater diame-
ter in the reference steel, as shown in the little upper photograph of Fig. 7. In the diagram
of Fig. 7 the variation of the crater diameter with the increasing block thickness of the
GFRP block is quantified [9, 10]. Three different diameters have been measured in the
first backing plate: the surface diameter D(0 mm), i.e. the beginning of the crater forma-
tion in the backing, a diameter in a depth of 5 mm D(5 mm) (to show approximately the
transition to the stationary phase of the penetration process in steel), and the exit diameter
D(50 mm) of the first backing plate which corresponds to the generally known crater dia-
meter in RHA. The increase of the entrance diameter D(0 mm) with the increasing block
thickness tz,n may be explained by an enlarged mushrooming of the projectile during the
penetration in GFRP.

The X-ray technique offers a di-
rect visualization  of the penetration
process. Fig. 8 shows double-expo-
sed X-ray pictures of three experi-
ments with GFRP blocks of different
thickness (80 mm, 120 mm and 160
mm). The exposure times were cho-
sen in order to observe six successive
states of the ongoing mushrooming
during the penetration (the second
and the third exposure times as well
as the fourth and the fifth ones are
very close to one another). The
cratering velocity u as well as the pro-
jectile tail velocity vh are calculated
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Figure 7: Crater diameters in the backing 
behind differently thick GFRP targets.

Figure 8: Double-exposed X-ray pictures of 
the erosion of the rod tip during the penetration 
into differently thick GFRP targets.



from the given time and space relations and assigned to each picture. The given tip dis-
placements (57, 41 and 49 mm) correspond to the growth of the penetration depth.

The first two exposures in the upper picture show the mushroom formation after im-
pact up to a size of approximately two projectile diameters. In the second exposure in the
middle picture a clearly enlarged mushroom diameter of nearly 3D is seen. In the lower
picture no significant further mushroom growth is visible. Similar mushrooming observa-
tions are reported from investigations with models of steel fragments impacting GFRP
plates [9]. During the observed time intervals the average craterization velocity decreased
from 1725 m/s to 1225 m/s.

The targets from which the X-ray pictures in Fig. 8 were taken consisted of stacks of
GFRP plates. In the following experiments 200-mm-thick GFRP blocks have been inves-
tigated. In the left hand side of Fig. 9 photographs of the GFRP block have been taken be-
fore (upper picture) and after the experiment (lower picture). In the lower picture the state
of delamination is seen. Two computer drawings reproduced from the delaminated slices
represent a upper side view and a 3D view of the crater. The vertical lines in the upper side
view show the post-mortem delamination gaps.

It is obvious that the crater does not follow the shot axis as can also be seen in the lo-
wer photograph, though the GFRP matenal has a relatively low may be explained by the

following consideration: the X-ray
pictures of Fig. 8 show an enlarged
and not axially symmetric mushroo-
ming of the projectile tip. Obviously,
some parts have broken off during the
tip formation. Consequently, the pro-
jectile is laterally yielding towards
the direction with the smallest tip re-
sistance thus deviating from the shot
axis. The nonlinearity of the crater
will also contribute to a certain extent
to the thickness-dependent resistance
increase of the GFRP material.

Penetration Mechanism

Based on these experimental results the working hypothesis of the governing mecha-
nism of GFRP behavior under high-velocity impact loading could be confirmed. The tar-
get resistance increase during the penetration process can be explained by the special an-
isotropic behavior of the fabric layers. As the preferred lateral expansion of the strain
wave enlarges the radial extension of the bulge, accordingly growing numbers of fiber
layers of the GFRP material are incorporated into the growing bulge formation in front of
the projectile which develops faster than the crater formation. Consequently, the fibers
withstand the axial load by increasingly activating their tensile strength. The bulged
structure stiffens and increases the penetration resistance of the incorporated material, the
compliance in the axial direction being maintained. The more the projectile tip approa-
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Figure 9: Postmortem views of the crater and 
the delamination of a 200-mm-thick GFRP target.



ches the backing, the more this compressibility causes an additional resistance. All these
effects put together result in the growing penetration resistance which is observed in the
X-ray pictures of the increased mushrooming of the projectile tip.

CONCLUSIONS 

The considered GFRP has shown growing equivalence factors with increasing target
thickness in contrast to brittle and ductile materials.

The increasing mushrooming of the projectile tip within thick GFRP blocks has been
verified. The corresponding increase of the target resistance of the GFRP during the pene-
tration process can be explained by the special anisotropic behavior of the fabric layers.
The growing bulge in front of the projectile makes the tensile strength of the fibers more
effective in withstanding the axial load.

The curved penetration channel may be caused by the fact that some parts of the pro-
jectile tip have broken off during the tip formation. Consequently, the projectile is la-
terally yielding towards the direction with the smallest tip resistance. This nonlinearity of
the crater will additionally contribute to the thickness-dependent resistance increase.

Thick GFRP blocks reach the protective potential of titanium. Therefore, and taking
into account all the ballistic results available today, it is obvious that thick layers of GFRP
are useful for lightweight armor design.
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