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Abstract

The Walker–Anderson and Ravid–Bodner analytical models for penetration of projectiles in metallic
plates are well known in the ballistics community. The Walker–Anderson model uses the centerline
momentum balance in the projectile and target to calculate the penetration history into a semi-infinite
medium, while the Ravid–Bodner model uses the upper bound theorem of plasticity theory modified to
include dynamic effects. The Ravid–Bodner model also includes a rich selection of failure modes suitable
for finite-thick metallic targets. In this paper a blended model is presented: momentum balance is used to
calculate the semi-infinite portion penetration (before the back of the target plate begins to flow), and the
Ravid–Bodner failure modes are used to determine projectile perforation. In addition, the model has been
extended to handle multiple plate impact. Numerical simulations show that after target failure the projectile
still continues to erode for some microseconds. This time has been estimated and incorporated into the
model. Examples are presented for long-rod projectiles against thick and spaced-plate targets backed by a
witness pack that is separated from the main target element(s) by an air gap. Agreement with results from
numerical simulations is quite good.
r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The Walker–Anderson analytical penetration model [1] predicts the penetration of long rods
into semi-infinite metallic targets by using the centerline momentum balance with certain plasticity
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Nomenclature

c0 velocity of the elastic–plastic interface
c speed of sound in projectile
c0 bulk sound speed (target)
cp auxiliary variable
D projectile diameter
Gt shear modulus (target)
Hb bulge height (see Fig. 2)
k slope of Hugoniot relation
K0 ambient bulk modulus
KtðtÞ bulk modulus (target)
LðtÞ projectile length
R crater (penetration channel) radius
Rp projectile radius
sðtÞ plastic extent in projectile
T target thickness
uðtÞ penetration velocity
U2 auxiliary variable
uz centerline velocity
vðtÞ tail velocity of projectile
V0 impact velocity
Yt target flow stress
zi position of projectile–target interface
Zi;Zpen;ZT bulge advancement
zp Position of projectile tail

Greek symbols
aðtÞ Extent of the plastic zone in the target
Zb radial extent of bulge
ecr critical strain
Z0 max extent of bulge
ep equivalent plastic strain
sxz shear stress in target
b angle (see Fig. 2)
rp projectile density
rt target density
sp projectile flow stress
w auxiliary variable
z auxiliary variable
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assumptions. Key assumptions are that the velocity profiles in the projectile and target are
specified, and that the shear stress within the target can be evaluated from a hemispherical flow
field, which is calculated from the curl of a vector potential (thus insuring the incompressibility of
plastic flow). It can be shown in the limit as the three-dimensional terms are allowed to go to zero,
and the transient terms ignored (i.e. steady-state conditions) that the one-dimensional model of
Tate and Alekseevskii is recovered, although the Walker–Anderson model predicts a priori the
penetration resistance of the target, whereas the term is empirical in the original work of Tate and
Alekseevskii.

Ravid and Bodner [2], in their penetration model, postulate flow fields for different regions of
the target. A variational procedure is used to determine the longitudinal and radial extent of
plastic deformation (combined with compatibility conditions between the various flow zones). The
Ravid–Bodner model deals with finite-thickness metallic targets by considering seven different exit
modes that can take into account a range of failure modes, such as petalling, plugging, etc. (The
initial work by Ravid and Bodner [2] considered the projectile to be rigid, but they later extended
their model to an eroding projectile [3]. However, the exit modes represent a response of the target
material, and are therefore independent of whether the projectile is rigid or eroding.)

This paper presents a blend between the Walker–Anderson and Ravid–Bodner models. This
‘‘unified’’ model uses the momentum balance equation to calculate at each time step the penetration
velocity of the projectile. The different exit modes proposed by Ravid et al. [4] were added assuming
that the target could fail only when the plastic extent reaches the rear target surface.

There was also an objective to make the model applicable to multiple-plate penetration
problems. Numerical simulations were performed to study multiple-plate interactions. The
simulations clearly show that erosion and deformation of the projectile continues some
microseconds after target failure due to stress gradients that exist in the projectile nose area
after perforation. In this work, it is assumed that stress relaxation (meaning the elimination of
stress gradients due to rarefaction waves from the stress-free surface, and velocity equilibration of
the projectile) occurs at the rate observed in the numerical simulations. To check the model,
examples are presented for long-rod projectiles against thick targets, thick targets backed by a
witness pack, as well as a spaced-plate target backed by a witness pack. Agreement with
experimental results and numerical simulations is considered to be quite good.

2. Analytical model

2.1. First phase: penetration into semi-infinite target

The Walker–Anderson model [1] is based on a centerline momentum balance. Target resistance
is based on a three-dimensional flow field1 combined with rigid-plastic assumptions for the
constitutive response of the plastically flowing target material. Effects of target compressibility are
included in the extent of the flow field. Since the centerline momentum equation is central to the
model, it is given here, and other equations are included within the individual subsections as

1The flow field is three-dimensional, and an ðr; y; zÞ coordinate system is used to describe the flow field [1]. However,

axial symmetry considerations permit some simplification, so it might be argued that the flow field is ‘‘two-

dimensional.’’
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necessary. The integral of the time-dependent momentum equation, along the projectile–target
centerline, is evaluated to calculate the penetration history. The problem is assumed axially
symmetric, with the z-coordinate denoting the direction of penetration
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In Eq. (1), the integration interval zp to zi evaluates the momentum equation from the tail of the
projectile (zp) to the projectile–target interface (zi). The integration interval zi to +N evaluates
the momentum equation from the projectile–target interface into the target, which is assumed to
be semi-infinite.

The basic equations and assumptions for evaluating the various terms of Eq. (1), as well as the
explicit expressions for the flow fields are described in Walker and Anderson [1]. Performing the
integrations—using a bilinear velocity profile in the projectile, hemispherical flow in the target,
and the Von Misses flow rule—leads to the following equation:
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where the dot over a symbol denotes the time derivative of the variable. Elastic waves between the
tail and the elastic–plastic interface in the projectile result in deceleration of the projectile tail
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The erosion rate of the projectile is given by the geometric condition

’L ¼ �ðv � uÞ: ð4Þ

The plastic extent, s; in the projectile is calculated assuming that the velocity profile and its
derivative are continuous at the projectile–target interface
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The radius of the penetration crater is calculated from an equation fit to experimental data

R ¼ Rpð1þ 0:287V0 þ 0:148V2
0 Þ: ð6Þ

The bulk modulus is assumed to vary with penetration velocity according to

Kt ¼ K0 1þ k
u

c0

	 
2

: ð7Þ

At this point, given the initial impact velocity, this system of equations can be solved to determine
the penetration-time history provided the extent of plastic flow, given by aR; can be determined.
Compressible cylindrical cavity expansion provides an estimate for a;2 [1] a is solved as a function

2It was demonstrated by Chocron et al. [5], that cylindrical cavity expansion provides a more accurate estimate of the

extent of plastic flow than spherical cavity expansion.
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of the penetration velocity from the transcendental equation
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Eqs. (2)–(8) are solved simultaneously to give the penetration history as a function of time. Input
parameters are the impact velocity and the respective material properties for the projectile and
target.

2.2. Second phase: bulging and perforation

The Walker–Anderson model, described by the series of equations above, is operative up to the
penetration depth where the rear surface affects the penetration process. From this point on,
modifications are required to account for and model the perforation mechanics. When the exit
descriptions of Ravid and Bodner [2] are adapted to the penetration model, bulge formation and
advancement are defined and possible failure modes can be analyzed. Various failure mechanisms
can cause target failure and perforation including ejected target mass in the form of a conical plug
(when shear effects are dominant) or a spherical cap (when ductile effects dominate). The
possibility of ejection of a frontal conical sector in the form of a defined fragment cloud (debris)
including the mass and spatial distribution of a fragmentation cone can also be analyzed.

2.2.1. Transition to exit stages

The semi-infinite penetration model is assumed to be operative up to the point Z0
T when the

plastic boundary, assumed Zi þ ða� 1ÞR; reaches the effected target rear surface covering the
projected area of pR2 (see Fig. 1)

ðZH � Z0
TÞ

2 þ R2 ¼ a2R2: ð9Þ

After transition has been realized a spherical expansion flow field is assumed to be operative in the
frontal zone II (see Fig. 2). To be consistent with Ref. [1] the flow field is given by Eq. (10). For
later use, we define the variable r1 by Eq. (11)

ur ¼ u
R

r

	 
2

cos y; ð10Þ

r1 �
R

sin b
: ð11Þ

Incompressible flow is assumed towards the free target rear surface in zone II (while zone I is
considered a transition ‘‘dead zone’’ moving at velocity u), shown in Fig. 2. We consider the
volume that is pushed by the penetrator from ZT further to be equal to the volume of the spherical
bulged zone, namely

pZ3
bR3ð1 � cos bÞ2ð2 þ cos bÞ

3sin3 b
¼ pR2ðZT � Z0

TÞ; ð12Þ

ZT ¼ Z0
T þ

Z t

tT

u dt; ð13Þ
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where Z0
T and tT are the transition axial location and time, respectively, during the penetration

process. The bulge radial extent ZbR (Fig. 2) is given by Eq. (14), where Zpen ¼ ZH � Zi þ r1
ð1 � cos bÞ; and by utilizing Eq. (11), we get Eq. (15). Using Eqs. (14) and (15), and solving
Eq. (12), we get bðZTÞ and Eq. (16)

Zb ¼
H � Zpen

R
tan bþ 1; ð14Þ

Fig. 1. Transition to bulge formation.

Fig. 2. Bulge formation.
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Zpen ¼ ZH � Zi þ R
1 � cos b

sin b
; ð15Þ

Hb ¼
ZbR

sin b
ð1� cos bÞ: ð16Þ

while ZbR grows during bulge formation, assuming R is constant, Zb will finally come to a
maximum value Z0

b with associated b0 ¼ bðZ0
bÞ: RZ0

b represents the maximum radial extent of the
bulge. From this point z0

b; the spherical growth of the bulge ceases. The bulge now advances in
such a form that a new spherical sector is built over the former one (see Fig. 3) with the constraint
that the volume is equal to that pushed by the penetrator from its former position.

Therefore, we can write
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The following geometrical relationships are defined:
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Z�b
sin b�
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 �
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Fig. 3. Bulge advancement.
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with Zpen defined from Eq. (15). Eqs. (17)–(19) are solved simultaneously for the four unknowns
b; d; Zb; and x: The bulge height is given by

Hb ¼ xþ
ZbR

sin b
ð1 � cos bÞ: ð20Þ

Note: x�; d�;b� are previously calculated values, which were initially 0; dðb0Þ;b0 at Z0
b:

2.2.2. Analyzing possible exit modes
Seven different exit modes have been assumed: ductile exit (Fig. 4), early brittle shear failure

(BSF) (2 modes), BSF (3 modes) and fragmentation. Since the presentation of all these failure
modes is long and the math involved is quite tedious it will be skipped in the core of the paper and
left for the appendix. The failure condition for each of the failures modes is evaluated at each time
step during the bulging deformation phase. The model ‘‘implements’’ the failure mode that occurs
first.

2.3. Third phase: free flight

When the target ‘‘fails’’, that is, there is ‘‘perforation’’, the projectile no longer encounters any
further resistance, but projectile erosion can continue some microseconds because of the large
residual stresses in the plastic zone. Refs. [6,7] studies the history of the projectile length, as
calculated using numerical simulations, for tungsten-alloy projectiles penetrating a 45.7-cm-thick
RHA target. Behind the RHA target, separated by an air gap of 7.62 cm, is a RHA witness pack.
Between exit from the rear surface of the target and the beginning of penetration into the witness
pack, the projectile length decreases (erodes) by approximately one projectile diameter. This effect
is not particularly large (nominally one part in 30 for this particular example) for single-plate

Fig. 4. Ductile exit.
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targets, but the cumulative effect for multiple-plate targets would result in substantial errors and
thus cannot be ignored.

2.4. Relaxation time

We are interested in cases where penetration stresses are sufficiently high that the projectile
material is plastically deforming and eroding. The plastic extent in the projectile can be calculated
with Eq. (5).

Using results from numerical simulations, it is possible to estimate the length of time it takes for
the projectile to equilibrate in velocity. Elastic waves traveling within the projectile are responsible
for velocity equilibration, so one possibility to estimate this relaxation time is to assume that it is
proportional to the time it takes for an elastic wave to go and come back from nose to tail. But the
results shown in Fig. 5 suggest that the relaxation time does not depend on projectile length. The
plot shows the velocity of nose and tail of a long-rod tungsten-alloy projectile impacting a spaced
target (six plates, vertical lines are the front of the plate). As the nose perforates a plate, the nose
velocity increases, trying to equilibrate with the tail velocity. (Most of the projectile material has
the speed of the tail [8], and therefore, the tail velocity—until the projectile becomes relatively
short—dominates in determination of the equilibration velocity [9].) The time taken to relax
between two consecutive plates does not depend on which plate is being penetrated.
Consequently, since the projectile is shorter after each of the impacts, the relaxation time does
not appear to depend strongly on the length of the projectile. More likely, the relaxation time
depends on the size of the plastic zone in the projectile, which is proportional to the projectile
radius.
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Fig. 5. Simulation results for nose and tail velocities of a tungsten-alloy projectile impacting six-spaced plates.
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In this paper the time assumed for relaxation is given by

trelax ¼ 30
Rp

cp
; ð21Þ

where Rp is the radius of the projectile and cp the sound speed of the projectile material.

2.5. Velocity of the projectile after relaxation

Between failure of a plate and relaxation of projectile no force is acting on the projectile. The
total momentum is then constant allowing the calculation of the velocity after relaxation. When
the plate fails the velocity profile in the projectile is constant (say Vfail) from the tail to the rear of
the plastic zone, and then decreases linearly in the plastic zone to the penetration velocity ufail; see
Refs. [1] for more details. Assuming that the length of the projectile just before failure is Lfail; the
plastic extent sfail; and the tail and nose velocities are Vfail and ufail; respectively, then the velocity
Vrelax of the (now rigid) projectile after equilibration (relaxation) is given by

Vrelax ¼
ðLfail � sfailÞ

Lfail
Vfail þ

sfail

Lfail

Vfail þ ufail

2

	 

: ð22Þ

The projectile might impact the next target element before achieving total equilibration, as for
example is shown in Fig. 5. Therefore Eq. (22) does not provide sufficient information, and an
expression for the ‘‘nose velocity’’ u is needed for free flight.

2.6. Velocity of the nose and tail during free flight

The velocity of the nose during free flight is assumed to increase linearly with time from its
velocity at the instant of failure, ufail; to its equilibration velocity, Vrelax

uðtÞ ¼ ufail þ
Vrelax � ufail

trelax � tfail

	 

ðt � tfailÞ: ð23Þ

The same assumption gives the velocity of the tail

vðtÞ ¼ vfail þ
Vrelax � vfail

trelax � tfail

	 

ðt � tfailÞ: ð24Þ

Eqs. (23) and (24) are valid only when totrelax: The position of the nose at any time as well as at
the instant of the impact with the next target element are easily calculated with the integration of
Eq. (23). The difference between Eqs. (23) and (24) gives the erosion rate (a negative quantity
since the projectile is shortening); and integration of the erosion rate over time provides the
decrease in projectile length.

Eqs. (1)–(24) and Eqs. (A.1)–(A.17), allow the solution of long-rod projectiles impacting semi-
infinite or finite-spaced targets. The residual velocity and residual length from perforation of one
target element are used as the ‘‘initial’’ conditions for impact with the next target element.
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2.7. Examples

2.7.1. Calibration and examples with thick targets

An essential parameter in the perforation model is the uniaxial strain to failure ecr: One
experiment was selected to calibrate the value of ecr: After calibration, the same ecr was used
for the remainder of the model calculations. The experiment used for calibration was selected
from experimental results reported in [10]. In the experiments, a 2.90-cm-thick hard-steel target
will stop a L=D ¼ 12:5 tungsten-alloy long-rod projectile (L ¼ 5:0 cm) impacting at 1240m/s,
but that same target is perforated at an impact velocity of 1260m/s. This 1260-m/s result was
selected as the limit case, permitting the solution of the equations at an ‘‘assumed’’ ballistic
limit condition. The value for e at arrest was then defined to be ecr (an error of approximately
20m/s is thus introduced into the model, consistent with the uncertainty in the experimentally
determined ballistic limit velocity). The analytical model requires as input the flow stresses for
the projectile and target materials. The effective flow stresses were assumed to be 1.20 and
1.45GPa, respectively, these values are commensurate with the material property values reported
in [10]. ecr was determined to be 65% for the high-hard armor steel used in the experiments.
As already mentioned, this value was then considered to be an intrinsic material property and
was thus not varied as the model was exercised and the results compared to other experimental
data.

The first example is the calculation of the penetration depth and bulge size for a plate with
thickness (T) of 2.90 cm impacted by a tungsten long rod at 1240m/s. The comparison of the
experimental results and the analytical model is made in Fig. 6(a) for the ballistic limit condition.
Model results are overlaid onto a photographic image of the test results. The black lines indicate
the positions calculated by the analytical model. The total depth of penetration, the bulge height,
and the lateral dimension of the bulge are reproduced very well by the analytical model. As can be
seen, arrest of the projectile was also predicted.

The second case involves a 4.85-cm-thick target impacted by the same type of projectile, but
now at 1680m/s. The model predicts failure of the target (fragmentation failure mode), the failure

Fig. 6. Comparison of the analytical (black line) and experimental results. (a) V0 ¼ 1240m/s, T ¼ 2:90 cm, (b)

V0 ¼ 1680m/s, T ¼ 4:85m/s.
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mode observed in the real test. Model results are again overlaid onto a photographic image of the
test results, Fig. 6(b). Again the model correctly predicts the size and extent of the bulge.

The nose and tail positions as a function of time, using flash radiography, were also obtained
for a number of experiments, all at an approximate impact velocity of 1700m/s. These
experimental points are shown in Fig. 7. The model results are shown as the solid lines. Thus, it is
demonstrated that not only are the size of the bulge and failure well predicted, but that the time-
histories of the projectile nose and tail agree extremely well with those measured in the
experiments.

Another example is the analytical calculation of residual velocities and the ballistic limit velocity.
It is well known that it is extremely difficult to obtain accurate results with a model near the
ballistic limit because the derivative becomes infinite and the errors in the calculations increase
accordingly. The example studied was a long rod, length 8.29 cm, impacting a steel target (Brinell
Hardness 415), with a thickness of 2.90 cm. The experimental ballistic limit was determined to be
982735m/s [10]. The yield strength values for tungsten (1.20GPa) and steel (1.45GPa) used in
the analytical models are the ones used previously; ecr was again 65%. The results of the model are
shown in Fig. 8, and compared to the experimental data. The ballistic limit predicted by the model
was 1000725m/s, which overlaps the experimental ballistic limit velocity. The model reproduces
well the steep rise in residual velocity just above the ballistic limit velocity. The predicted residual
velocities are only slightly higher than the experimental ones. This may be because all dissipative
mechanisms have not been modeled. Alternatively, the steel might have been slightly different than
the one used in the examples above (it almost certainly came from a different fabrication lot).
Additionally, the projectile and target constitutive behaviors are simplified to single effective values
for the flow stresses. Any or all of these effects could lead to slight discrepancies between model
predictions and the experimental data. Given the approximations used in the analytical model to
simplify and make tractable the mechanics, it is concluded that the model is quite accurate.
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2.7.2. Examples with thick and thin and spaced targets
Two multiple element target examples are presented, with each example having long-rod

projectiles impacting at two different velocities. All the examples presented in this paper are taken
from Ref. [6]; additional details on the experimental results are provided in Ref. [7]. The
projectiles had a length-to-diameter (L=D) ratio of 30, and were equal kinetic energy projectiles.
Information on the projectiles is summarized in Table 1. The targets are described later.

2.7.3. Example of long rod against RHA target and witness pack
This example is the impact of a tungsten-alloy, long-rod projectile penetrating a 45.72-cm-thick

RHA target. Behind the target, separated by a 7.62-cm air gap, is a RHA witness pack. Tables 1
and 2 list the geometry and material properties used for the calculations. Fig. 9 shows both the
numerical and analytical position vs. time plots for the two projectiles. The numerical simulation
results, from the Eulerian wave code CTH, are shown as circles for clarity, although the output of
the CTH are continuous lines. The CTH results matched the experimental depths of penetration
into the witness pack, so the analytical model is compared to the time history numerical results.
The predictions of the model are in excellent agreement with the numerical simulations.

Table 1

Projectile geometry

Projectile 1 Projectile 2

Impact velocity (km/s) 1.775 2.60

Mass (g) 1830 850

Length (cm) 49.4 38.4

Diameter (cm) 1.65 1.28
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Fig. 8. Residual velocities obtained by the model compared with experiments.
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Fig. 10 depicts the history of velocities of the tail and nose for the two projectiles considered.
It is pointed out that the peaks of the nose velocity happen when the projectile is in free flight. In
this example, the air gap of 7.62 cm is sufficiently wide to allow for the projectile velocity to
equilibrate (relax) completely before impacting the witness plate. The agreement between the
model and the numerical simulations is again very good during penetration of the RHA target
and during the free flight. The agreement is not quite so good in the penetration of the witness
pack because the projectile, by this time, has a low aspect ratio, and the assumption that the tail
portion of the projectile is in a state of uniaxial stress is no longer valid. Nevertheless, overall
agreement is quite good.

2.7.4. Example of long rod against six-spaced plates and witness pack

In this example, the long rods (same as in the first example) were fired against six high-hard steel
plates, each 1.90-cm thick, inclined at 651 (NATO angle), and separated by air gaps of 2.54 cm.
The witness pack was placed 7.62 cm behind the last plate. To account for target obliquity in the

Fig. 9. Positions of tail and nose of the projectile calculated numerically (CTH) and analytically.

Table 2

Material properties used in the analytical calculations

Projectile density (g/cm3) 17.4 Target yield strength (GPa) 1.2

Projectile yield strength (GPa) 1.5 Target shear modulus (GPa) 77.7

Speed of sound in the projectile (km/s) 3.85 Target sound velocity (km/s) 4.50

Slope of Hugoniot (tungsten, n.d.) 1.44 Slope of Hugoniot (steel, n.d.) 1.49

Target density (g/cm3) 7.85 Strain to failure in target (n.d.) 0.65
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analytical model, it was assumed that the effective plate thicknesses should be the line-of-sight
thicknesses as seen by the projectile. Therefore, the target elements were increased by 1/cos 651.

It is more difficult to assess the accuracy for this example. The numerical simulations
overpredicted the depth of penetration into the witness pack, at each of the impact velocities, by
approximately 4 cm. Most likely, this is due to an inadequate treatment of failure at the projectile
nose and/or breakout (failure) from each of the target elements. Unfortunately, however, the
depth of penetration into the witness pack is essentially the only diagnostic from the experiment.
Numerical simulations provide time histories of penetration, which allow for better comparisons,
so comparisons are made with the simulation results.

Position vs. time for the fast and slow projectiles from the simulations and the analytical
model are compared in Fig. 11; again, the circles represent the simulations results, and the lines
the results from the analytical model. Agreement is very good for the 2.60-km/s projectile. For the
lower velocity projectile the analytical model underpredicts the depth of penetration into the
witness pack, but is in better agreement with the experimental results.

The time histories of the nose and tail of the projectiles are plotted in Fig. 12. Predictions of the
analytical model are in very good agreement for the hypervelocity projectile. For the 1.775-km/s
projectile, a shift between the analytical and numerical calculations is observed in the impact
timing. The cause for this shift is that the numerical calculation is three-dimensional, allowing for
the formation of an asymmetric mushroom head on the nose of the projectile. (An asymmetric
mushroom nose also forms on the 2.60-km/s projectile, but the diameter of this projectile is
smaller, and therefore, the effect is less pronounced. Further, the velocity is higher, so strength
effects are not as significant as at the lower velocity.) Because of the obliquity of the target plates,
the ‘‘side’’ of the mushroom impacts the plates and interaction starts sooner than for normal
impact. Multiple applications of this affect results in a cumulative shift in the time. The analytical
model does not predict as deep penetration as the numerical simulations, as already discussed, so
the total time of penetration is correspondingly less.

Fig. 10. Time histories of the tail and nose velocities for numerical (CTH) and analytical model results.
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3. Conclusions

A blending of two well-known penetration models, Walker–Anderson and Ravid–Bodner, has
been performed. The penetration mechanics of long rods into multiple metallic plates has been
divided into three main phases: semi-infinite penetration phase (before the plastic front reaches
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Fig. 12. Time histories of the tail and nose velocities for numerical (CTH) and analytical model for the six-plate impact

example.

Fig. 11. Position–time histories for numerical (CTH) and analytical models for the six-plate impact example.
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the back of the target); bulging and failure phase; and the last phase, a relaxation phase, which
occurs during ‘‘free flight’’ of the projectile prior to impacting another target element. The
Walker–Anderson model was used to describe the semi-infinite penetration process while the
Ravid–Bodner exit stages were implemented for the second stage. The free-flight stage model was
developed based on simple assumptions drawn from the results of numerical simulations and
momentum conservation. The three models were combined to form a ‘‘unified’’ model. The
unified model is able to predict a wide range of penetration mechanics phenomena including semi-
infinite penetration, penetration into finite-thick and thin plates, and penetration into spaced
plates. The model has been validated against computations and experiments, matching histories of
velocities of nose and tail and ballistic limits quite remarkably. The primary discrepancy is found
to occur at the end of the penetration process where the assumption of uniaxial stress within the
projectile is no longer correct. The authors are currently working to improve this aspect of the
model.

Appendix. Seven failure modes

For the exit modes, the flow on the interface between zones II and III is assumed to be

ur ¼ u
R

r

	 
2
cos b

sin2 b
;

where r is now defined from point 0 (see Figs. 2 and 3).

Ductile exit

If no other failure criteria are met or if no failure occurs during penetration into a ductile target
plate, then the process described above will continue while b becomes larger and larger, and
Zb-1:0: In this case a spherical cape (Mej) will be ejected in front of the residual penetrator with
the onset of a mechanical instability, defined by

Z�
b þ u Dt � Rð1� cos b�ÞXx� þ H: ðA:1Þ

Early brittle shear exit modes

There are two early failure modes, designated EBS1 and EBS2. Early failure is considered if it
occurs during bulge formation (Fig. 2).

EBS1: In zone III of Fig. 2, we can calculate the shear strain rate

’g3 ¼
R2u cot b

bðr0Þ2ðZ0R � r0 sin bÞ
; ðA:2aÞ

while b is in radians and r0 is defined and shown in Fig. 2. It is assumed that the interface A23 does
not fail and that it moves with the prescribed flow velocity of zone II where y � b: Material
deformation at the zone IV interface can be neglected in comparison to zone III, which is
subjected to extensive shear. ’g3 can be now integrated over the volume of zone III (VIII) to get
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ð’g3Þavg; where ð’g3Þavg is defined as

ð’g3Þavg ¼

R
’g3 dVIII

VIII
: ðA:2bÞ

Using Eqs. (A.2a) and (A.2b) we get that

ð’g3Þavg ¼
u sin ð2bÞA1

bRðZ0A3 � A2Þ
; ðA:3aÞ

A1 ¼
Z0

Zb

ðZb � 1Þ 1�
1

2 cosðb=2Þ

	 

þ

ln ðZbÞ
2 cosðb=2Þ

; ðA:3bÞ

A2 ¼
2

3

ðZ0 � 1Þ3 � ðZ0 � ZbÞ
3

b cotðb=2Þ
; ðA:3cÞ

A3 ¼ ðZ0 � 1Þ2 � ðZ0 � ZbÞ
2: ðA:3dÞ

Failure occurs whenZ t

tT

ð’g3Þavg dtXgcr; ðA:4Þ

where tT is the time of the beginning of the bulge phase, gcr is a material property; gcrE
ffiffiffi
3

p
ecr

where ecr is usually calculated from an uniaxial tension test by measuring the elongation strain at
failure and reduction of area at failure.

EBS2: It might occur that the accumulated strain rate on the area of A23 (between zones II and
III, see Fig. 2) will result in a shear strain that exceeds gcr: Therefore, we can calculate ð’g23Þavg

ð’g23Þavg ¼

R
’g3 dA23

A23
ðA:5aÞ

and obtain

ð’g23Þavg ¼
u sinð2bÞ

bR
A4; ðA:5bÞ

A4 ¼
ln Zb

Z0 � 1

Z0 � Zb

	 

Z0ðZ

2
b � 1Þ

: ðA:5cÞ

The failure criterion at time t ¼ tf for EBS2 isZ t

tT

ð’g23Þavg dtXgcr: ðA:6Þ

Brittle shear failure (BSF)

There are three different BSF modes that can occur during the bulge advancement stage
(Fig. 3), these are designated BSF1, BSF2, and BSF3, respectively.
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BSF1: This corresponds to failure of zone III of Fig. 3 due to the accumulated shear strain. The
calculation is similar to EBS1 except the radial extension of zone III is now defined as RZ0

b instead
of RZ0 as in the case of EBS1. Therefore, the calculation is similar to EBS1 except that Z0

b replaces
Z0 in Eqs. (A.2a) and (A.3a)–(A.3d). Then Eq. (A.4) applies for BSF1.

BSF2: This corresponds to failure of the interface area between zones II and III of Fig. 3. The
calculation is again the same as for EBS2 where Z0

b replaces Z0 in Eq. (A.5c), which modifies
Eq. (A.5b). Then, Eq. (A.6) holds for BSF2.

BSF3: If it is also possible to get fracture at layers of zone III on the peripheral spalling zone
within zone III of Fig. 3, denoted as zone III0 in this case:

gout �
x

RðZ0
b � ZbÞ

ðA:7Þ

and if goutXgcr failure BSF3 occurs.

Fractured ejected mass

The possibility of fragmentation exit mode (FEM) is examined utilizing two basic assumptions:
(a) failure occurs at zone II of Fig. 2 or Fig. 3 when ðeeff Þavg of that zone is greater than ecr;
(b) fragmentation of this zone is in accordance with the Grady criteria [11]. For the first
assumption, we will use the definition of the flow field from Ref. [1], which the strain rates can be
calculated

’err ¼ �2u
R2

r3

	 

cos y; ðA:8Þ

’eyy ¼ u
R2

r3

	 

cos y; ðA:9Þ

’ery ¼ �
1

2
u

R2

r3

	 

sin y: ðA:10Þ

We can define

’eeff ¼
ffiffiffiffiffiffiffiffiffiffi
2
3
’eij ’eij

q
ðA:11Þ

and for zone II we get

ð’eeff Þavg ¼

R
’eeff dVII

VII
;

thus getting

ð’eeff Þavg ¼
3u sin5ðbÞ lnðZbÞgðbÞ
RðZ3

b � 1Þð1 � cos bÞ
; ðA:12Þ
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where

gðbÞ ¼
1

sin2 b
ð1 � cos bÞA6 þ

1ffiffiffiffiffiffiffiffi
132

p ln
1 þ

ffiffiffiffi
11
12

q
ffiffiffiffi
11
12

q
cos bþ A6

8><
>:

9>=
>;; ðA:13aÞ

A6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 11

12
sin2 b

q
: ðA:13bÞ

Failure occurs at t ¼ tf whenZ tf

tT

ð’eeff Þavg dt > ecr: ðA:14Þ

Fragmentation of this failure zone II of Fig. 2 or Fig. 3 (depending on time of occurrence) is in
accordance with Grady (Kipp and Grady, 1996); therefore, the brittle fractured fragment (see
Fig. 13) will have a radial dimension (thickness) given by Eq. (A.15), where ’eeff is defined in
Eq. (A.11) as a function of r: After substitution of Eqs. (A.8)–(A.10) into Eq. (A.11), and solving
for zone II, we obtain Eq. (A.12) and its area Af ðrÞ; which is defined by Eq. (A.16)

DrðrÞ ¼

ffiffiffiffiffi
24

p
KIc

rc0’eeff

" #2=3

; ðA:15Þ

Af ðrÞ ¼ p

ffiffiffiffiffi
24

p
KIc

rc0’eeff

" #4=3

: ðA:16Þ

Thus, the spherical sectored fragment can be defined symmetrically rDyErDf � D; see Fig. 13,
and therefore, we get Eq. (A.17). Utilizing Eqs. (A.15) and (A.16), we solve Eq. (A.17) for D:

Af ðrÞE2D2 þ 4DrðrÞD: ðA:17Þ

Zone II will be fragmented at a distance r while assuming Df ¼ Dy ¼ Dr: The fragments will be
ejected at their current velocity.

Fig. 13. Zone II fragment shape.
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