PREFACE

When "The Effects of Atomic Weapons" was published in 1950, the explosive energy yields of the fission bombs available at that time were equivalent to some thousands of tons (i.e., kilotons) of TNT. With the development of thermonuclear (fusion) weapons, having energy yields in the range of millions of tons (i.e., megatons) of TNT, a new presentation, entitled "The Effects of Nuclear Weapons," was issued in 1957. A completely revised edition was published in 1962 and this was reprinted with a few changes early in 1964.

Since the last version of "The Effects of Nuclear Weapons" was prepared, much new information has become available concerning nuclear weapons effects. This has come in part from the series of atmospheric tests, including several at very high altitudes, conducted in the Pacific Ocean area in 1962. In addition, laboratory studies, theoretical calculations, and computer simulations have provided a better understanding of the various effects. Within the limits imposed by security requirements, the new information has been incorporated in the present edition. In particular, attention may be called to a new chapter on the electromagnetic pulse.

We should emphasize, as has been done in the earlier editions, that numerical values given in this book are not--and cannot be--exact. They must inevitably include a substantial margin of error. Apart from the difficulties in making measurements of weapons effects, the results are often
dependent upon circumstances which could not be predicted in the event of a nuclear attack. Furthermore, two weapons of different design may have the same explosive energy yield, but the effects could be markedly different. Where such possibilities exist, attention is called in the text to the limitations of the data presented; these limitations should not be overlooked.

The material is arranged in a manner that should permit the general reader to obtain a good understanding of the various topics without having to cope with the more technical details. Most chapters are thus in two parts: the first part is written at a fairly low technical level whereas the second treats some of the more technical and mathematical aspects. The presentation allows the reader to omit any or all of the latter sections without loss of continuity.

The choice of units for expressing numerical data presented us with a dilemma. The exclusive use of international (SI) or metric units would have placed a burden on many readers not familiar with these units, whereas the inclusion of both SI and common units would have complicated many figures, especially those with logarithmic scales. As a compromise, we have retained the older units and added an explanation of the SI system and a table of appropriate conversion factors.

Many organizations and individuals contributed in one way or another to this revision of "The Effects of Nuclear Weapons," and their cooperation is gratefully acknowledged. In particular, we wish to express our appreciation of the help given us by L. J. Deal and W. W. Schroebel of the Energy Research and Development Administration and by Cmdr. H. L. Hoppe of the Department of Defense.

Samuel Glasstone
Philip J. Dolan

ACKNOWLEDGEMENTS

Preparation of this revision of "The Effects of Nuclear Weapons" was made possible by the assistance and cooperation of members of the organizations listed below.

Department of Defense

Headquarters, Defense Nuclear Agency
Defense Civil Preparedness Agency
Armed Forces Radiobiology Research Institute
U.S. Army Aberdeen Research and Development Center, Ballistic Research Laboratories
U.S. Army Engineer Waterways Experiment Station
Naval Surface Weapons Center

Department of Defense Contractors

Stanford Research Institute
General Electric, TEMPO
Mission Research Corporation

Department of Commerce
CONTENTS

CHAPTER I--General Principles of Nuclear Explosions
Characteristics of Nuclear Explosions
Scientific Basis of Nuclear Explosions

CHAPTER II--Descriptions of Nuclear Explosions
Introduction
Description of Air and Surface Bursts
Description of High-Altitude Bursts
Description of Underwater Bursts
Description of Underground Bursts
Scientific Aspects of Nuclear Explosion Phenomena

CHAPTER III--Air Blast Phenomena in Air and Surface Bursts
Characteristics of the Blast Wave in Air
Reflection of Blast Wave at a Surface
Modification of Air Blast Phenomena
Technical Aspects of Blast Wave Phenomena

CHAPTER IV--Air Blast Loading
Interaction of Blast Wave with Structures
Interaction of Objects with Air Blast

CHAPTER V--Structural Damage from Air Blast
Introduction
Factors Affecting Response 156
Commercial and Administrative Structures 158
Industrial Structures 165
Residential Structures 175
Transportation 189
Utilities 195
Miscellaneous Targets 206
Analysis of Damage from Air Blast 212

CHAPTER VI-Shock Effects of Surface and Subsurface Bursts 231
Characteristics of Surface and Shallow Underground Bursts 231
Deep Underground Bursts 238
Damage to Structures 241
Characteristics of Underwater Bursts 244
Technical Aspects of Surface and Underground Bursts 253
Technical Aspects of Deep Underground Bursts 260
Loading on Buried Structures 263
Damage from Ground Shock 265
Technical Aspects of Underwater Bursts 268

CHAPTER VII--Thermal Radiation and Its Effects 276
Radiation from the Fireball 276
Thermal Radiation Effects 282
Incendiary Effects 296
Incendiary Effects in Japan 300
Technical Aspects of Thermal Radiation 305
Radiant Exposure-Distance Relationships 316

CHAPTER VIII--Initial Nuclear Radiation 324
Nature of Nuclear Radiations 324
Gamma Rays 326
Neutrons 340
Transient-Radiation Effects on Electronics (TREE) 349
Technical Aspects of Initial Nuclear Radiation 353

CHAPTER IX--Residual Nuclear Radiation and Fallout 387
Sources of Residual Radiation 387
Radioactive Contamination from Nuclear Explosions 409
Fallout Distribution in Land Surface Bursts 414
Fallout Predictions for Land Surface Bursts 422
Attenuation of Residual Nuclear Radiation 439
Delayed Fallout 442
Technical Aspects of Residual Nuclear Radiation 450

CHAPTER X--Radio and Radar Effects 461
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>461</td>
</tr>
<tr>
<td>Atmospheric Ionization Phenomena</td>
<td>462</td>
</tr>
<tr>
<td>Ionization Produced by Nuclear Explosions</td>
<td>466</td>
</tr>
<tr>
<td>Effects on Radio and Radar Signals</td>
<td>479</td>
</tr>
<tr>
<td>Technical Aspects of Radio and Radar Effects</td>
<td>489</td>
</tr>
<tr>
<td>CHAPTER XI-The Electromagnetic Pulse and its Effects</td>
<td>514</td>
</tr>
<tr>
<td>Origin and Nature of the EMP</td>
<td>514</td>
</tr>
<tr>
<td>EMP Damage and Protection</td>
<td>523</td>
</tr>
<tr>
<td>Theory of the EMP</td>
<td>532</td>
</tr>
<tr>
<td>CHAPTER XII--Biological Effects</td>
<td>541</td>
</tr>
<tr>
<td>Introduction</td>
<td>541</td>
</tr>
<tr>
<td>Blast Injuries</td>
<td>548</td>
</tr>
<tr>
<td>Burn Injuries</td>
<td>560</td>
</tr>
<tr>
<td>Nuclear Radiation Injury</td>
<td>575</td>
</tr>
<tr>
<td>Characteristics of Acute Whole-Body Radiation Injury</td>
<td>583</td>
</tr>
<tr>
<td>Combined Injuries</td>
<td>588</td>
</tr>
<tr>
<td>Late Effects of Ionizing Radiation</td>
<td>589</td>
</tr>
<tr>
<td>Effects of Early Fallout</td>
<td>594</td>
</tr>
<tr>
<td>Long-Term Hazard from Delayed Fallout</td>
<td>604</td>
</tr>
<tr>
<td>Genetic Effects of Nuclear Radiation</td>
<td>609</td>
</tr>
<tr>
<td>Pathology of Acute Radiation Injury</td>
<td>614</td>
</tr>
<tr>
<td>Blast-Related Effects</td>
<td>618</td>
</tr>
<tr>
<td>Effects on Farm Animals and Plants</td>
<td>618</td>
</tr>
<tr>
<td>Glossary</td>
<td>629</td>
</tr>
<tr>
<td>Guide to SI Units</td>
<td>642</td>
</tr>
<tr>
<td>Index</td>
<td>644</td>
</tr>
</tbody>
</table>